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Abstract— Human-following autonomous robots can help
human-oriented tasks in many fields. In this paper, we focus
on replacing traditional shopping carts with human-following
robots as a way to aid public health measures under events
such as a global pandemic. The framework mirrors efforts
made in other domains to introduce human-following robots
into human-oriented tasks, and consists of two major building
blocks: human pose estimation from 3D data, and collision-free
navigation with gesture-based positioning suggestions. RGB-D
data is used to estimate human poses and extract pointing
gestures. The pose and pointing direction are used as positioning
suggestions. The cart then either selects to move as close to the
positioning suggestion as possible, or follows the human if they
move too far away. The multi-cart system uses a model pre-
dictive control (MPC) based optimization method to generate
multiple collision-free paths that satisfy as many positioning
suggestions as possible. We validate our pathing method with
both large-scale multi-cart simulations in ROS/Gazebo. We
further demonstrate the human-following block with in-lab tests
using a group of omni-directional robots.

I. INTRODUCTION

Human-following autonomous robots increase human pro-
ductivity and lower physical barriers for many human-centric
tasks. Unlike industrial robots, human-following robots are
designed to work directly with humans and consider addi-
tional human-centric performance metrics such as comfort,
adaptability and safety [1], which enrich the human experi-
ence in many domains from manufacturing to personal in-
home robotics. The recent global pandemic has additionally
underlined the need for robust human-following robotics
in supermarkets and shopping malls, where considerable
resources are spent on sanitizing high-touch surfaces such as
shopping cart handles. Replacing traditional shopping carts
with human-following shopping carts would both aid public
health measures and reduce shopping effort for consumers.

While there has been some research towards producing
an autonomous shopping cart [2], [3] and some attempts to
commercialize smart carts, the majority of relevant research
focuses on other domains where human-following robots are
used [4]. These works commonly focus on computer vision
and artificial intelligence methods to track humans and then
combine the tracking results with traditional planning and
control methods to provide human-following functionality.
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Fig. 1. (a) The human-following shopping cart navigates the aisles using
on-board cameras and RGB-D sensors, which provide mapping information
for collision avoidance. (b) The user can use gesture-based suggestions, e.g.
pointing, to assign target positions for the shopping cart. (c) Shopping carts
communicate locally and plan moves cooperatively as a multi-robot team.

Approaches to determining human-following robot poses
and trajectories are varied. In [5], robots follow humans
but refrain from entering their personal spaces via social
field avoidance, and similar concepts are explored in [6].
In [7], [8], planned trajectories for human-following robots
utilize predictions of human trajectories. The model pre-
dictive controller proposed in [9] also uses predictions of
human trajectories, and a formation-based tracking method
is presented in [10] for multiple robots. A recent review of
human-aware navigation is provided in [11]. Visual servoing
approaches include deep reinforcement learning [12], marker
recognition [13], and wearable devices [14].

Human-robot interactions for human-following robots are
commonly based on user gestures determined using cameras
or IMUs. Human skeleton and pose data are used to deter-
mine pointing gestures [15] or actions/gaits [16], [17]. Skele-
tal estimates are similarly fused with face recognition for
human-following robots in [18]. Gesture-based commands
are used to determine tracking behavior in [19].

In this paper, we propose a human-following algorithm
that is supplemented by gesture-based contactless positioning
suggestions. We also outline a novel approach to determine
human-aware waiting locations for autonomous shopping
carts both with and without gesture-based suggestions. Our
method is tailored for robot-assisted shopping, and considers
potential shopper and robot trajectories when selecting com-
fortable waiting poses and paths. We validate the cooperative
multi-cart planner by simulating a supermarket setting, and
demonstrate the gesture-based suggestion method with single



robot experiments. The main contributions are therefore a
framework and related algorithms for environment-aware
multi-cart human following, as well as our code released
on GitHub1.

The rest of the paper is structured as follows. Sec-
tion II outlines the mathematical formulation for the human-
following shopping cart problem. Section III details the
solution method. Section IV details the experimental setup
for multi-cart simulations and in-lab gesture tracking exper-
iments. Section V discusses experimental results. Finally,
Section VI presents conclusions and future work.

II. PROBLEM STATEMENT

Let R be the set of N cooperative human-following
carts. The pose of robot ri ∈ R, i = 1, ..., N at time
t is xi(t) = [xi(t), yi(t), θi(t)]

T , xi(t) ∈ Xi, where Xi
is the feasible pose set for ri, with dynamics given as
[ẋTi (t), ẍTi (t)]T = f(xi(t), ẋ

T
i (t),ui(t)), where ui(t) are

the control inputs for ri at time t, and the pose goal for
robot ri is x(g)

i = [x
(g)
i , y

(g)
i , θ

(g)
i ]T , x(g) ∈ Gi, where

Gi ⊆ Xi is a polytope of goal states. We define hi(t) =
[ηi(t)

T ,φi(t)
T ]T as the concatenation of the pose vector

ηi(t) [20] and the gait feature vector φi(t) [21] for the
human that ri is targeting.

The optimal cart trajectories xi(t)∗ are solutions to a
constrained multirobot trajectory optimization problem,

x∗i (t)
i=1,...,N

= argmin
xi(t)

N∑
i=1

[∫ t+T

t

ψ(xi(τ),ui(τ)) dτ

]
(1a)

s.t. ψ(xi(t),ui(t)) = pi‖xi(t)− x(g)
i ‖, (1b)

ẋi(t) = f(xi(t),ui(t)), (1c)
xi(t) ∈ Xi, xi(t+ T ) ∈ Gi, ui(t) ∈ Ui, (1d)

where T is free and pi is the priority of the ith robot. The
human-following shopping cart problem with positioning
suggestions is then defined using the optimization problem
as finding an optimal xi(t) for each ri to minimize (1a)
for the entire robot group R, given predictions for hi(t).
In particular, we wish to find optimal pose goals x(g)

i to
calculate x∗i (t).

III. SOLUTION METHOD

The combined planning and control problem in Section II
is solved in two steps by first planning high-level optimal
target positions and trajectories, and then tracking these
trajectories using model predictive control (MPC). The target
positions x(g)

i are selected by optimizing desired poses x(d)
i

described in (2) using the optimization in (4), so that each
robot either trails hi(t) by a distance of δf , or moves to a
waiting position that is within a distance of δw from a human-
suggested pose, or approaches the human at a distance of δa
so they can drop off any items.

The desired pose x(d)
i is determined at each time step by a

finite state machine with Following, Waiting and Approach-
ing states, which selects the corresponding robot pose as

1https://www.github.com/RutgersRAMLab/ramlab mrta

Fig. 2. (a) Point cloud data is used to estimate user pose and gait.
(b) Human pose estimates determine robot pose suggestions by casting a
ray from the extended arm onto the environment and selecting the closest
feasible pose in Xi. Optimal trajectories are calculated via (4) to a pose
within a polytope Gi around the pose suggestion.

Fig. 3. The robot’s operational mode and its goal pose are determined
by a state machine with three states: Following (F), where the robot keeps
within δf of the human, Waiting (W), where the robot parks itself nearby,
and Approaching (A), where the robot approaches to within δa.

x
(d)
i =


x
(w)
i , robot state=Waiting

x
(f)
i , robot state=Following
x
(a)
i , robot state=Approaching

. (2)

State transitions between Following (F) and Waiting (W)
are triggered at a robot-human distance of Rf→w for F→W,
and a distance of Rw→f for W→F. Fig. 3 shows the
transition conditions for each state, and Fig. 4 shows a
schematic for the F→W transition. Note that the actual
trajectory changes once the F→W threshold is crossed.

The user provides pose suggestions x(s)
i through pointing

gestures calculated form hi(t). Rays are projected from the
user’s extended arm pose ηi(t) onto the environment as
shown in Fig. 2 if the gait feature vector φi(t) matches a
pointing gesture. The desired pose is selected as a feasible
pose in Xi closest to the suggested pose, otherwise, the
desired pose is selected as xi(t) or the trailing pose described
above, as set by the designer.

The intersection point x(int)
i is follows the segment be-

tween the base f1 and tip f2 of the index finger, with
direction vector v = f2 − f1. The no-hit pose x(g′)

i is

x
(s′)
i = f2 + l2v, l2 =

z2
z1 − z2

‖f1 − f2‖, (3)

where ‖ · ‖ is the Euclidean norm, and the goal pose is
selected with safety buffer δb as x(s)

i = x
(s′)
i if x(int)

i =

https://www.github.com/RutgersRAMLab/ramlab_mrta


Fig. 4. The cart transitions from its Following state to its Waiting state
when the cart reaches the following-to-waiting transition radius Rf→w , and
resumes following by transitioning from its Waiting state to its Following
state when the user reaches the waiting-to-following transition radius
Rw→f . Switching to the cart’s Approaching state pre-empts this transition,
and instead triggers an approaching-to-following or approaching-to-waiting
transition.

x
(s′)
i , and as x(s)

i = [x
(int)
i + δbnx, y

(int)
i + δbny, 0]T

otherwise, where n̂ = [nx, ny]T is the map normal at x(int)
i .

The following pose x(f)
i is the pose trailing the user’s

trajectory by δf . For tractability, user trajectories are stored
as a queue so the last pose is at least δf along the trajectory,
and the penultimate pose is less than δf along the trajectory.
Conversely, the approach pose x(a)

i is the pose δa away from
the user along a trajectory from the robot to the user.

At any given time, the cart solves a sub-optimization to
determine the best goal pose x(g)

i ,

x
(g)
i
∗ = argmin

x
(g)
i

∑
i

‖es‖+ α2fc(x
(g)
i ) + α3fb(x

(g)
i ), (4)

where es = x
(g)
i − x

(d)
i is the error between the goal pose

xi(t) and the desired pose x(d)
i , fc is a pose cost that

discourages waiting in poses that coincide with heavy foot
traffic, and fb is a blocking cost that discourages blocking
the predicted trajectories of nearby humans. The relative
strengths of these three cost components are determined by
weighting variables α2 and α3.

The pose cost fc for a pose xi is determined by querying
a heat map constructed from historical human trajectories
using 2D kernel density estimation for query point x(g)

i as

fc(x
(g)
i ) =

1

|H|
∑

h(t)∈H

1

Th

∫ tf

t0

KH(x
(g)
i − h(t)) dt, (5)

where KH(x) = 1
2π |H|

−1/2e−
1
2x

TH−1x is a user-defined
bivariate anisotropic Gaussian kernel with covariance matrix
H, H is the set of all past human trajectories, and Th is the
total trajectory time for h(t) ∈ H.

Since human access to shelves should be prioritized at all
times, the robot makes an effort to move out of the way to
avoid blocking any humans when it is in a Waiting state.
This is done by adding a blocking potential fb to (4) as

fb(x
(g)
i ) =

∑
hj∈N (xi(t))

φθ(x
(g)
i ,hj)Kb (6)

that uses a radial basis function (RBF) with user-defined
parameter γ1, Kb = e−γ1‖x

(g)
i (t)−hj(t)‖2 , to determine the

influence of nearby humans in the neighborhood N (xi(t)) of
ri, which is modified by a weighting φθ(x

(g)
i ,hj) = e−γ2t

2

with user-defined temporal attenuation parameter γ2.
Once the goal pose is determined, the optimization prob-

lem in (1a)–(1d) can be solved in an iterative manner using
a multi-robot receding-horizon planner described below.

Let zi(t) = [xTi (t), ẋTi (t)]T be the state of the robot at
time t, with dynamics żi(t) = f(zi(t),u(t)), discretized
around zi(t0) as zi[k + 1] = Adzi[k] +Bdui[k], with dis-
cretized matrices Ad = eATA, Bd = (eAT−I)BA−1, and
A = ∂f(·)

∂z |zi(t0)
ui(t0)

, B = ∂f(·)
∂ui(t)

|zi(t0)
ui(t0)

, such that the dynamics

are written as ∆zi[k + 1] = Ad∆zi[k] +Bd∆ui[k] given
∆zi[k] = zi[k]− zi(t0) and ∆ui[k] = ui[k]− ui(t0).

An A∗ search is performed on a coarsely-discretized map
at each time step to determine desired trajectory x(G)

i (t),
which provides a global trajectory plan. The local trajectory
plan x(l)

i (t) for optimization window t0 < t < t+ T is cal-
culated by first placing a moving boundaryW with diagonal
corners [xi(t0)−W ,xi(t0) +W ], W = [wx, wy]T around
xi(t0), i = 1, ..., N such that ‖xi(t)− xi(t0)‖1 < ‖W ‖1,
t0 < t < t0 + T , and solving (1a)–(1d) for this window only,
up to x(l)

i (t0 + T ) = x
(d)
i (t0 + T ) at t = t0 + T , with track-

ing error ei(t) = x
(l)
i (t)− x(G)

i (t). We rewrite (1a)–(1d) as
a near-equivalent constrained optimization problem

x
(l)
i
∗

i=1,...,N

= argmin
xi(t)

i=1,...,N
t0<t<t0+T

N∑
i=1

pi

t0+T∑
t=t0

‖ei(t)‖Q (7a)

s.t. żi(t) = f(zi(t),ui(t), (7b)

z
(l)
i (t0) = zi(t0), (7c)

x
(l)
i (t) ∈ W, t0 < t < t0 + T, (7d)

‖x(l)
i (t)− x(l)

j ‖ > Rr, j 6= i, (7e)

‖x(l)
i (t)− h(l)

j ‖ > Rh, (7f)

ui(t) ∈ Ui, (7g)

where ‖·‖Q is the vector norm weighted by positive-definite
matrix Q, and (7e)–(7f) are collision constraints for robots
and humans with distances Rr and Rh, respectively.

(7) is recast as a constrained quadratic program (QP) and
solved with an iterative linear time-varying model predictive
control solver [22], where all matrices are chosen so the QP
satisfies the constraint equations in (7).

Fig. 5 shows the overall data flow for both systems. An
algorithmic description of the trajectory optimization method
is given in Algorithm 1.

Algorithm 1 Multirobot Receding-Horizon Planner
1: procedure GENERATE OPTIMAL TRAJECTORY

2: x
(d)
i ← DESIREDPOSE(robot.State) . from (2)

3: x
(g)
i ← OPTIMIZEPOSE(x

(d)
i ) . from (4)

4: while True do
5: x

(l)
i (t)← LOCALWINDOW(x

(G)
i (t)=A∗(x

(g)
i ))

6: x
(l)
i
∗(t)← QP(ei(t) = x

(l)
i − x

(G)
i )

7: ui(t)← LOWLEVELCTRL(x
(l)
i
∗(t),u∗i (t))



Fig. 5. Data flows in a similar manner for both the simulation and the
experimental platforms. Sensor data is used to perform skeleton tracking,
trajectory prediction, localization and local obstacle mapping. Skeleton data
is used to determine user gestures, which are then used to determine
positioning suggestions. Gesture, trajectory and localization data is used
to determine each robot’s state as shown in Fig. 3. The goal pose is used
to plan a global and local optimal trajectory.

IV. EXPERIMENTAL SETUP

In this section, we describe the setups for simulation stud-
ies performed using a differential drive Turtlebot3 platform,
and the experiments conducted using a three-wheeled omni-
directional robot. Section IV-A and Section IV-B detail the
simulation and experimental setups, respectively.

A. Multi-Cart Simulations

A multi-cart supermarket environment is simulated in
ROS/Gazebo using modified Turtlebot3 platforms. Fig. 6
shows one of the supermarket layouts used to perform
simulation experiments. All simulated robots are equipped
with laser scanners, RGB cameras and Kinect-like depth
sensors, and share floor plans and environmental scans.

Fig. 6. A supermarket is simulated in Gazebo, and includes up to 40
autonomous shopping carts and simulated humans. Several humans can be
actively controlled by the user to test pointing and walking behavior, and
the rest are simulated using crowd dynamics.

Each robot’s local pose estimated via adaptive Monte
Carlo localization. Obstacle avoidance and goal selection
is done locally (i.e., separately) in a moving window with
on-board sensors and shared maps. We implement (6) as a
costmap for a node that calculates (4). Similar to in-store
conditions, the robots are given a priori information (floor
plans and historical trajectories), but perform obstacle avoid-
ance and human tracking online with on-board data. The
simulations therefore test state and goal switching, obstacle
avoidance and shelf blocking, and multi-robot planning.

B. Human-Following Experiments

We perform experiments with the three-wheel omni-
directional robot shown in Fig. 7. Robot models and low-

Fig. 7. A three-wheel omni-directional robot is instructed to follow a
human target in a lab setting. The robot is fitted with color stereo and
RGB-D cameras. Vicon motion tracking cameras are used to validate the
experimental result.

level controllers are adapted from [23] with kinematic model

q̇ = B̄(θ)u, B̄(θ) =

[
Rθ 0
0 1

]
, Rθ =

[
cθ −sθ
sθ cθ

]
, (8)

where q = [x, y, θ] are the generalized robot coordinates,
θ is the angle between the world-frame x-axis and the
robot’s leading wheel, sθ = sin θ, cθ = cos θ, and inputs
u = [u1, u2, u3]T depend on wheel angular velocities ω1, ω2

and ω3 as u1 = r
√
3

3 (ω3 − ω2), u2 = − 2r
3 (ω1 − ω2 − ω3),

u3 = r
6r (ω1 + ω2 + ω3). Additionally, B̄T

(θ) = B̄
−1

(θ).
The robot is fitted with RGB-D cameras for navigation

and human pose estimation, and Vicon Bonita cameras col-
lect ground truth data using surface-adhered retro-reflective
markers. Position feedback is provided by a LabView ground
control station. The human subject is asked to draw random
targets within a 30 m2 test area using pointing gestures.

V. RESULTS AND DISCUSSION

We report the results under four main categories: State
and goal switching, and non-blocking pose selection are
demonstrated with single-robot simulations in Sec. V-A and
Sec. V-B, respectively; multi-robot planning is demonstrated
with large-scale simulations in Sec. V-C; and gesture-based
suggestion tracking is demonstrated with lab experiments in
Sec. V-D. For consistency, all simulation results are reported
using the same map with six parallel aisles. The results of
all experiments are reported using ground truth Vicon data,
which have sub-millimeter precision at a 100 Hz sample rate
for the given test area. Each category is presented in isolation
to test edge cases and robustness.

A. State and Goal Switching

To test goal switching, the user is first asked to remain
stationary while the cart navigates towards them. The user
moves to the next aisle once the robot has reached a waiting
position. The robot demonstrates state switching behavior
by first following the user, then waiting at a position the
user points to, then following them again once they move
further than Rw→f , and finally waiting at a second position
determined by the user. Related metrics are shown in Fig. 8.
Fig. 9 shows the simulation trajectories for a cart following
a user through parallel aisles.



(a) (b) (c)

Fig. 8. (a) Plot of the distance between the robot and its selected goal. (b) Comparison of the goal position and the human position. The goal pose
initially aligns with the human’s pose due to the absence of a trailing path, and is subsequently switched to an optimal waiting pose as the robot crosses
Rf→w . Following behavior resumes when the human starts moving away, with a goal pose that trails the human’s trajectory by δf . The robot selects a
waiting pose based on user suggestions once it reaches Rf→w again. (c) Comparison of robot and human positions as influenced by distance-dependent
state switching.

Fig. 9. Results from a user following test, where the cart was asked to
follow the user at a distance of Rf→w = 1 m. The cart initially follows
the user until it reaches Rf→w , and then moves to the suggested waiting
pose (purple). The robot resumes following once the user moves further
than Rw→f .

B. Non-Blocking Pose Selection

Non-blocking pose selection allows the robot to make
way for other shoppers while still waiting close to its user.
Non-blocking behavior relies on three costmap layers for
L2 distance cost, the pose cost based on historical shopper
trajectories, and the blocking cost based on the predicted
human path. The minimal cost across the combined costmap
provides the optimal waiting position for the robot. The
blocking cost converts predicted trajectories into a distance-
based penalty that is discounted with time.

The pose cost is constant since the shopper heatmap
is roughly constant over long-term observations, while the
distance cost and the blocking cost are highly dependent on
the suggested waiting position and the motions of nearby
humans. We demonstrate this variability in Fig. 10 by varying
the suggested waiting positions and the human trajectories.

The behaviors described in this section are tunable by the
designer using α2 and α3 in (4). All figures shown here
are calculated using α2 = 0.7 and α3 = 0.4 with a map
resolution of 5 cm/pixel, but we note that different robot
configurations or supermarket layouts require different αs.

Fig. 10. Optimal non-blocking poses selected for various scenarios. (a-c)
User suggestion is varied along the projected path. (d-g) User approaches
and passes robot.

Fig. 11. (a) Combined global trajectories for 50 people, using data from
all trials. (b) Trajectories from a single trial (no robots) colored by person,
showing high-activity areas and bottlenecks. (c) Trajectory data from a trial
with robots using the multirobot planner. Map resolution is 5cm/px.

C. Multi-Robot Planning

We validate our approach, with simulations of 50 robots
and 50 humans. Fig. 11 shows trajectories from 1000 trials
with randomized start and goal poses.

We compared the performance of our planner against
a scenario where no robots are present, a scenario where
robots are present but exhibit pure pursuit behavior, and a
scenario where robots plan individual trajectories. The results
in Table I look at three metrics: mean robot-user separation,
human wait time, and time to goal. The multirobot planner



outperforms other methods when looking at wait time and
time to goal metrics, whereas the individual planner has
lower mean separation.

TABLE I
PLANNER COMPARISON FOR LARGE-SCALE MULTIROBOT SIMULATIONS

Metric Mean Sep. Dist. Wait Time Time To Goal

No Robots (Base) N/A 39.5 s 210.9 s
No Planner 2.41 m 117.3 s 235.0 s
Individual Planner 2.30 m 103.8 s 227.5 s
Multirobot Planner 2.34 m 100.2 s 225.9 s

D. Gesture-Based Suggestion Tracking

Pose suggestions were extracted from human finger es-
timates, transformed into the world frame and sent to the
conebot at a rate of 20 Hz via wifi for online tracking. Pose
suggestions were filtered with a Savitzky-Golay filter (1.5 s
window, 3rd order) to reduce the effect of occasional jumps
in finger tracking. Tracking errors are shown in Fig. 12
and were on average around 0.7 m across all trials and
were calculated using the instantaneous pose suggestions.
Practitioners are advised to filter finger estimates to reduce
errors due to jitter.

Fig. 12. (a) Experimental gesture-based suggestion tracking results for a
single trial. (b) Histogram of normed tracking errors across all trials, with
mean error (dashed red) median error (solid black).

VI. CONCLUSION

In this paper, we presented a framework for autonomous
human-following shopping carts in crowded environments
with multiple users and robots. Robots switched between
following the user, waiting while users browsed the shelves,
and approaching users so they could place their items in
the basket. We considered historical shopper trajectories to
determine optimal waiting positions during browsing. User
access to shelves was prioritized by updating the robot pose
cost by a shelf-blocking term. We presented a method for
users to suggest waiting poses using hand and arm gestures,
which were extracted from RGB-D skeletal estimates. We
demonstrated our framework in a supermarket setting using
large-scale simulations, and in lab experiments with a three-
wheel omni-directional robot. Future work includes the fab-
rication of multiple prototypes and on-site deployment.
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